Tips for training: Adaptive Learning Rate
critical point其实不一定是,你在训练一个Network的时候,会遇到的最大的障碍,今天要告诉大家的是一个叫做Adaptive Learning Rate的技术,我们要给每一个参数不同的learning rate
Training stuck ≠ Small Gradient
People believe training stuck because the parameters are around a critical point …
為什麼我说这个critical point不一定是我们训练过程中,最大的阻碍呢?
往往同学们,在训练一个network的时候,你会把它的loss记录下来,所以你会看到,你的loss原来很大,随著你参数不断的update,横轴代表参数update的次数,随著你参数不断的update,这个loss会越来越小,最后就卡住了,你的loss不再下降
那多数这个时候,大家就会猜说,那是不是走到了critical point,因為gradient等於零的关係,所以我们没有办法再更新参数,但是真的是这样吗
当我们说 走到critical point的时候,意味著gradient非常的小,但是你有确认过,当**你的loss不再下降的时候,gradient真的很小吗?**其实多数的同学可能,都没有确认过这件事,而事实上在这个例子裡面,在今天我show的这个例子裡面,当我们的loss不再下降的时候,gradient并没有真的变得很小
gradient是一个向量,下面是gradient的norm,即gradient这个向 量的长度,随著参数更新的时候的变化,你会发现说虽然loss不再下降,但是这个gradient的norm,gradient的大小并没有真的变得很小
这样子的结果其实也不难猜想,也许你遇到的是这样子的状况
这个是我们的error surface,然后你现在的gradient,在error surface山谷的两个谷壁间,不断的来回的震荡
这个时候你的loss不会再下降,所以你会觉得它真的卡到了critical point,卡到了saddle point,卡到了local minima吗?不是的,它的gradient仍然很大,只是loss不见得再减小了
所以你要注意,当你今天训练一个network,train到后来发现,loss不再下降的时候,你不要随便说,我卡在local minima,我卡在saddle point,有时候根本两个都不是,你只是单纯的loss没有办法再下降
就是為什麼你在在[作业2-2.png]],会有一个作业叫大家,算一下gradient的norm,然后算一下说,你现在是卡在saddle point,还是critical point,因為多数的时候,当你说你训练卡住了,很少有人会去分析卡住的原因,為了强化你的印象,我们有一个作业,让你来分析一下,卡住的原因是什麼,
Wait a minute
有的同学就会有一个问题,如果我们在训练的时候,其实很少卡到saddle point,或者是local minima,那这一个图是怎麼做出来的呢?
我们上次有画过这个图是说我们现在训练一 个Network,训练到现在参数在critical point附近,然后我们再来根据eigen value的正负号,来判断说这个critical point,比较像是saddle point,还是local minima
那如果实际上在训练的时候,要走到saddle point,或者是local minima,是一件困难的事情,那这个图到底是怎麼画出来的
那这边告诉大家一个秘密,这个图你要训练出这样子的结果,你要训练到你的参数很接近critical point,用一般的gradient descend,其实是做不到的,用一般的gradient descend train,你往往会得到的结果是,你在这个gradient还很大的时候,你的loss就已经掉了下去,这个是需要特别方法train的
所以做完这个实验以后,我更感觉你要走到一个critical point,其实是困难的一件事,多数时候training,在还没有走到critical point的时候,就已经停止了,那这并不代表说,critical point不是一个问题,我只是想要告诉你说,我们真正目前,当你用gradient descend,来做optimization的时候,你真正应该要怪罪的对象,往往不是critical point,而是其他的原因,
Training can be difficult even without critical points
如果今天critical point不是问题的话,為什麼我们的training会卡住呢,我这边举一个非常简单的例子,我这边有一个,非常简单的error surface
我们只有两个参数,这两个参数值不一样的时候,Loss的值不一样,我们就画出了一个error surface,这个error surface的最低点在==黄色X==这个地方,事实上,这个error surface是convex的形状(可以理解为凸的或者凹的,convex optimization常翻译为“凸优化”)
如果你不知道convex是什麼,没有关係,总之它是一个,它的这个等高线是椭圆形的,只是它在横轴的地方,它的gradient非常的小,它的坡度的变化非常的小,非常的平滑,所以这个椭圆的长轴非常的长,短轴相对之下比较短,在纵轴的地方gradient的变化很大,error surface的坡度非常的陡峭
那现在我们要从黑点这个地方,这个地方当作初始的点,然后来做gradient descend
你可能觉得说,这个convex的error surface,做gradient descend,有什麼难的吗?不就是一路滑下来,然后可能再走过去吗,应该是非常容易。你实际上自己试一下,你会发现说,就连这种convex的error surface,形状这麼简单的error surface,你用gradient descend,都不见得能把它做好,举例来说这个是我实际上,自己试了一下的结果
我learning rate设10⁻²的时候,我的这个参数在峡谷的两端,我的参数在山壁的两端不断的震盪,我的loss掉不下去,但是gradient其实仍然是很大的
那你可能说,就是因為你learning rate设太大了阿,learning rate决定了我们update参数的时候步伐有多大,learning rate显然步伐太大,你没有办法慢慢地滑到山谷裡面只要把learning rate设小一点,不就可以解决这个问题了吗?
事实不然,因為我试著去,调整了这个learning rate,就会发现你光是要train这种convex的optimization的问题,你就觉得很痛苦,我就调这个learning rate,从10⁻²,一直调到10⁻⁷,调到10⁻⁷以后,终於不再震盪了
终於从这个地方滑滑滑,滑到山谷底终於左转,但是你发现说,这个训练永远走不到终点,因為我的learning rate已经太小了,竖直往上这一段这个很斜的地方,因為这个坡度很陡,gradient的值很大,所以还能够前进一点,左拐以后这个地方坡度已经非常的平滑了,这麼小的learning rate,根本没有办法再让我们的训练前进
事实上在左拐这个地方,看到这边一大堆黑点,这边有十万个点,这个是张辽八百冲十万的那个十万,但是我都没有办法靠近,这个local minima的地方,所以显然就算是一个convex的error surface,你用gradient descend也很难train
这个convex的optimization的问题,确实有别的方法可以解,但是你想想看,如果今天是更复杂的error surface,你真的要train一个deep network的时候,gradient descend是你,唯一可以仰赖的工具,但是gradient descend这个工具,连这麼简单的error surface都做不好,==一室之不治 何以天下国家為==,这麼简单的问题都做不好,那如果难的问题,它又怎麼有可能做好呢
所以我们需要更好的gradient descend的版本,在**==之前我们的gradient descend裡面,所有的参数都是设同样的learning rate,这显然是不够的,learning rate它应该要為,每一个参数客製化==**,所以接下来我们就是要讲,客製化的learning rate,怎麼做到这件事情
Different parameters needs different learning rate
那我们要怎麼客製化learning rate呢,我们不同的参数到底,需要什麼样的learning rate呢
从刚才的例子裡面,其实我们可以看到一个大原则,如果在某一个方向上,我们的gradient的值很小,非常的平坦,那我们会希望learning rate调大一点,如果在某一个方向上非常的陡峭,坡度很大,那我们其实期待,learning rate可以设得小一点
那这个learning rate要如何自动的,根据这个gradient的大小做调整呢
我们要改一下,gradient descend原来的式子,我们只放某一个参数update的式子,我们之前在讲gradient descend,我们往往是讲,所有参数update的式子,那这边為了等一下简化这个问题,我们只看一个参数,但是你完全可以把这个方法,推广到所有参数的状况
我们只看一个参数,这个参数叫做,这个是在第t个iteration的值减掉在第t个iteration这个参数i算出来的gradient
这个代表在第t个iteration,也就是θ等於θᵗ的时候,参数θᵢ对loss的微分,我们把这个θᵢᵗ减掉learning rate,乘上gᵢᵗ会更新learning rate到θᵢᵗ⁺¹,这是我们原来的gradient descend,我们的learning rate是固定的
现在我们要有一个随著参数客製化的learning rate,我们把原来learning rate 这一项呢,改写成
这个你发现它有一个上标t,有一个下标i,这代表说这个σ这个参数,首先它是depend on i的,不同的参数我们要给它不同的σ,同时它也是iteration dependent的,不同的iteration我们也会有不同的σ
所以当我们把我们的learning rate,从η改成的时候,我们就有一个,parameter dependent的learning rate,接下来我们是要看说,这个parameter dependent的learning rate有什麼常见的计算方式
Root mean square
那这个σ有什麼样的方式,可以把它计算出来呢,一个常见的类型是算,gradient的Root Mean Square
现在参数要update的式子,我们从θᵢ⁰初始化参数减掉gᵢ⁰,乘上learning rate η除以σᵢ⁰,就得到θᵢ¹,
-
这个σᵢ⁰在第一次update参数的时候,这个σᵢ⁰是(gᵢ⁰)²开根号
这个gᵢ⁰就是我们的gradient,就是gradient的平方开根号,其实就是gᵢ⁰的绝对值,所以你把gᵢ⁰的绝对值代到,这个式子中gᵢ⁰跟这个根号底下的gᵢ⁰,它们的大小是一样的,所以式子中这一项只会有一个,要嘛是正一 要嘛是负一,就代表说我们第一次在update参数,从θᵢ⁰update到θᵢ¹的时候,要嘛是加上η 要嘛是减掉η,跟这个gradient的大小没有关係,是看你η设多少,这个是第一步的状况
-
重点是接下来怎麼处理,那θᵢ¹它要一样,减掉gradient gᵢ¹乘上η除以σᵢ¹,
现在在第二次update参数的时候,是要除以σᵢ¹ ,这个σᵢ¹就是我们过去,所有计算出来的gradient,它的平方的平均再开根号
我们到目前為止,在第一次update参数的时候,我们算出了gᵢ⁰,在第二次update参数的时候,我们算出了gᵢ¹,所以这个σᵢ¹就是(gᵢ⁰)²,加上(gᵢ¹)²除以½再开根号,这个就是Root Mean Square,我们算出这个σᵢ¹以后,我们的learning rate就是η除以σᵢ¹,然后把θᵢ¹减掉,η除以σᵢ¹乘以gᵢ¹ 得到θᵢ²